Extensions 1→N→G→Q→1 with N=C2 and Q=C3×C327D4

Direct product G=N×Q with N=C2 and Q=C3×C327D4
dρLabelID
C6×C327D472C6xC3^2:7D4432,719


Non-split extensions G=N.Q with N=C2 and Q=C3×C327D4
extensionφ:Q→Aut NdρLabelID
C2.1(C3×C327D4) = C3×C6.Dic6central extension (φ=1)144C2.1(C3xC3^2:7D4)432,488
C2.2(C3×C327D4) = C3×C6.11D12central extension (φ=1)144C2.2(C3xC3^2:7D4)432,490
C2.3(C3×C327D4) = C3×C625C4central extension (φ=1)72C2.3(C3xC3^2:7D4)432,495
C2.4(C3×C327D4) = C3×C327D8central stem extension (φ=1)72C2.4(C3xC3^2:7D4)432,491
C2.5(C3×C327D4) = C3×C329SD16central stem extension (φ=1)72C2.5(C3xC3^2:7D4)432,492
C2.6(C3×C327D4) = C3×C3211SD16central stem extension (φ=1)144C2.6(C3xC3^2:7D4)432,493
C2.7(C3×C327D4) = C3×C327Q16central stem extension (φ=1)144C2.7(C3xC3^2:7D4)432,494

׿
×
𝔽